Genom każdego człowieka jest unikalny. Dziedziczony jest po połowie od obojga rodziców i stanowi łącznik z naszymi przodkami. Z genów możemy odczytać zarówno naszą przeszłość, to, skąd się wywodzimy, ale także przewidzieć, co nas czeka w przyszłości. Należy jednak podkreślić, że kod genetyczny nie determinuje naszego losu, ale dzięki jego poznaniu możemy stwierdzić, jakie są nasze predyspozycje i możliwości, a także przewidzieć mogące pojawić się w przyszłości zagrożenia dla naszego zdrowia.
- Skok technologiczny w dziedzinie badań genetycznych
- Czym są panele genowe i jaka jest ich rola w diagnostyce chorób?
- Badania genetyczne w diagnostyce chorób krążenia
- Badania genetyczne w diagnostyce chorób neurologicznych
- Badania genetyczne – okulistyka i otolaryngologia
- Badania genetyczne a diagnostyka chorób układu moczowego i oddechowego
- Podłoże genetyczne choroby istotnym elementem diagnostyki i leczenia
- Jak wygląda badanie genetyczne?
Fundamentalne znaczenie, zapisanego w cząsteczce DNA, kodu genetycznego człowieka, a także spodziewane korzyści z jego odczytania i rozszyfrowania przyczyniły się do tego, że jednym z największych wydarzeń początku XXI było zakończenie z sukcesem projektu sekwencjonowania ludzkiego genomu (ang. The Human Genome Project). To ogromne przedsięwzięcie naukowe trwało 13 lat, pochłonęło niemal 3 miliardy dolarów i było możliwe dzięki współpracy setek badaczy pracujących w 20 ośrodkach naukowych w USA, Wielkiej Brytanii, Francji, Niemczech, Japonii oraz Chinach. Ta, niespotykana dotychczas na tak ogromną skalę, międzynarodowa współpraca naukowa zaowocowała opublikowaniem w 2003 roku pierwszej sekwencji genomu człowieka. Dziś wiemy, że genom człowieka obejmuje około trzech miliardów par zasad, pośród których tylko mniej niż 3% odpowiada za kodowanie około 22 tysięcy genów. Dodatkowym, ale bardzo istotnym, rezultatem tego projektu było gwałtowne przyspieszenie badań nad znaczeniem i rolą poszczególnych genów w patogenezie chorób człowieka, a także ich wpływie na rokowanie oraz leczenie. Powstała nowa gałąź medycyny – medycyna personalizowana, dostosowana do indywidualnych cech pacjenta.
Skok technologiczny w dziedzinie badań genetycznych
W wyniku realizacji projektu sekwencjonowania ludzkiego genomu nastąpił także ogromny skok technologiczny w dziedzinie badań genetycznych. Pojawiły się wysokoprzepustowe metody sekwencjonowania następnej generacji (ang. NGS – Next Generation Sequencing). Obecnie, sekwencjonowanie całego pojedynczego genomu człowieka (ang. WGS – Whole Genome Sequencing) zajmuje kilka tygodni i kosztuje poniżej 1000 dolarów. Od strony technicznej zadanie to nie jest bardzo skomplikowane, natomiast analiza otrzymanych wyników jest trudna i stanowi duże wyzwanie. Problemem jest ogrom otrzymywanych informacji, a także ich interpretacja. Wynika to między innymi z faktu, że ponad 97% ludzkiego genomu stanowią sekwencje niekodujące, a wiedza o ich znaczeniu klinicznym jest ciągle jeszcze dość skąpa. W kontekście klinicznym znacznie bardziej przydatne jest sekwencjonawanie wszystkich genów, czyli sekwencjonowanie całoeksonowe (ang. WES – Whole Exome Sequencing). Pozwala ono poznać sekwencje fragmentów DNA, które kodują białka. Ilość generowanych informacji jest znacząco mniejsza niż podczas sekwencjonowania całego genomu, a analiza bioinformatyczna oraz kliniczna jest łatwiejsza i mniej czasochłonna.
Sekwencjonowanie całych genomów lub eksonów w istotny sposób przyczynia się do identyfikacji coraz większej liczby nowych wariantów genetycznych i określenia ich znaczenia. Wiedza ta jest wykorzystywana do tworzenia wydajniejszych narzędzi analizy genetycznej. Przykładem są diagnostyczne panele genowe, wykorzystujące metodę sekwencjonowania następnej generacji (NGS) do szybkiego badania dużej liczby genów.
Czym są panele genowe i jaka jest ich rola w diagnostyce chorób?
Gotowe, celowane panele genowe wydają się najbardziej ekonomicznym i wydajnym narzędziem medycyny personalizowanej. Składają się one z zestawu od kilku do nawet kilkuset genów, sekwencjonowanych jednocześnie. Geny wchodzące w skład panelu mają udokumentowany związek z konkretną chorobą bądź zespołami charakterystycznych objawów występujących w różnych jednostkach chorobowych. Diagnostyczne panele genomowe mogą być dedykowane grupom schorzeń na przykład panele kardiologiczne, hematologiczne, neurologiczne, endokrynologiczne, dla chorób metabolicznych oraz wiele innych.
Zestawy genów do panelu są wybrane przez specjalistów z różnych dziedzin medycyny i genetyki, którzy kierują się aktualną wiedzą naukową. Wiedza ta jest czerpana z fachowej literatury medycznej, a także rekomendacji towarzystw naukowych takich jak ACMG (ang. American College of Medical Genetics and Genomics), ASHG (ang. American Society of Human Genetics) czy ESHG (ang. European Society of Human Genetics). Źródłem informacji są także bazy danych gromadzące informacje na temat wpływu zmian genetycznych na wystąpienie i przebieg choroby. Wykorzystywane są między innymi takie źródła jak Orphanet, zbierająca dane na temat chorób rzadkich, OMIM (ang. Online Mendelian Inheritance in Man), HPO (ang. The Human Phenotype Ontology) czy ClinVar, który łączy warianty genetyczne z konkretnymi chorobami.
Obecnie możliwe jest powiązanie setek chorób ze zmianami w konkretnych genach. Przykładem są choroby metaboliczne, które mogą sprawiać trudności w diagnozowaniu ze względu na podobne objawy. Wykonując badanie z użyciem panelu NGS dla chorób metabolicznych, można poznać molekularne podłoże takich zaburzeń jak cystynuria, hemochromatoza, porfiria, niedobór witaminy B12, czy koenzymu Q10, a także kamica nerkowa czy otyłość monogenowa. Nadmierna waga ciała może być także spowodowana nieprawidłowym funkcjonowaniem układu hormonalnego. Wtedy jej przyczyny, podobnie jak przyczyny niedoczynności tarczycy, nadczynność przytarczyc, cukrzyc monogenowych oraz przedwczesnego wygasania czynności jajników, można zdiagnozować z pomocą panelu genowego dla chorób endokrynnych.
Badania genetyczne w diagnostyce chorób krążenia
Główną przyczyną zgonów w Polsce są choroby układu krążenia i szacuje się, że ponad 40% z nich ma komponentę dziedziczną. Analiza genetyczna za pomocą panelu kardiologicznego może być pomocna w określeniu predyspozycji do zachorowania, a także przyczyny takich zaburzeń jak: wrodzone wady serca, arytmia, migotanie przedsionków, nieprawidłowości aorty, tachykardia, zespół długiego lub krótkiego QT, oraz kardiomiopatie i dziedziczne dyslipidemie. Nawet jeśli choroba serca lub naczyń krwionośnych jest już zdiagnozowana, to dzięki analizie genetycznej można zidentyfikować jej podłoże w postaci znanej mutacji, ale także unikalnego wariantu występującego w rodzinie. Poznanie przyczyn zaburzenia pomoże zoptymalizować leczenie osoby chorej oraz otoczyć odpowiednią opieką jej krewnych.
Z kolei analiza panelu hematologicznego pozwoli poznać przyczyny genetyczne związane z zaburzeniami krwotoczno-zakrzepowymi jak hemofilią, niedokrwistością, w tym anemią Fanconiego i anemią Diamonda-Blackfana, a także zaburzeniami dotyczącymi krwinek białych np. wrodzona neutropenia, krwinek czerwonych np. wrodzone anemie hemolityczne w tym membranopatie, i płytek krwi np. małopłytkowość. Nieprawidłowy obraz morfologii krwi wiąże się także z zaburzeniami układu odpornościowego, których przyczyny genetyczne możemy poznać, analizując panel immunologiczny. W panelu tym zawarte są geny związane z wrodzonymi zespołami niewydolności szpiku, pierwotnymi niedoborami odporności, a także chorobami autoimmunologicznymi.
Badania genetyczne w diagnostyce chorób neurologicznych
Panel neurologiczny zawiera geny związane z kondycją układu nerwowego. Jest to szeroki panel pozwalający diagnozować wiele chorób takich jak, migrena, zaburzenia ze spektrum autyzmu oraz niepełnosprawność intelektualną. Są w nim także geny związane z zespołami padaczkowymi, które są jednymi z częstszych zaburzeń neurologicznych i w ponad połowie przypadków mają podłoże genetyczne. W przypadku tych chorób identyfikacja mutacji w konkretnych genach jest bardzo pomocna w doborze najlepszego leczenia i kontroli objawów. W panelu neurologicznym znajdują się geny związane z heterogenną grupą chorób mięśniowo-nerwowych, do której należą: dystrofie mięśniowe, miopatie i zespoły miotoniczne. Można dzięki niemu określić również przyczyny innych dysfunkcji układu nerwowego, w tym zespołu Charcot-Marie-Tooth, rdzeniowego zaniku mięśni, stwardnienia guzowatego, a także choroby Parkinsona i demencji. Są także panele NGS skupiające geny związane z zaburzeniami narządów zmysłów.
Badania genetyczne – okulistyka i otolaryngologia
Genetyczny panel okulistyczny pozwala zbadać podłoże genetyczne: jaskry, zaćmy, retinopatii, dystrofii rogówki lub siatkówki, zaburzenia widzenia barw i wielu innych dysfunkcji wzroku. Natomiast panel otolaryngologiczny zawiera geny odpowiedzialne za zaburzenia słuchu, w tym niedosłuch lub głuchotę, niesyndromiczna lub syndromiczna utratę słuchu oraz takie choroby jak zespół Waardenburga czy zespół Ushera.
>> Dowiedz się więcej: Diagnostyka genetyczna w okulistyce i otolaryngologii
Badania genetyczne a diagnostyka chorób układu moczowego i oddechowego
Defekty układu moczowego możemy zbadać z pomocą panelu nefrologicznego. W jego skład wchodzą geny związane z między innymi z patogenezą wielotorbielowatości nerek, zespołów mocznicowych, zespołu hemolityczno-mocznicowego, krzywicy hipofosfatemicznej, kamicy nerkowej, zespołu Alporta, a także wrodzonych wad nerek. Natomiast kondycję układu oddechowego można zbadać z pomocą pulmologicznego panelu NGS. Z jego pomocą będzie możliwa identyfikacja genetycznych przyczyn schorzeń takich jak: mukowiscydoza, rozstrzenie oskrzeli, torbielowatość płuc, pierwotne zespoły hipowentylacji oraz pierwotną dyskinezę rzęsek.
>> Dowiedz się więcej: Diagnostyka genetyczna w nefrologii
Osobną grupę chorób stanowią zespoły dysmorficzne, które mogą obejmować pojedynczą wadę, ale także ich grupy. Wady mogą być widoczne już po urodzeniu lub ujawniać się w trakcie rozwoju dziecka. Dysmorfie są wynikiem nieprawidłowego rozwoju zarodka, który w większości przypadków jest wynikiem zmian genetycznych. Niekiedy trudno jest uzyskać jednoznaczne rozpoznanie jedynie na podstawie objawów klinicznych lub obrazowania, jak to ma miejsce np.: w przypadku zespołów dysplazji szkieletowej. Analiza mutacji z użyciem diagnostycznego panelu obejmującego geny związane z dysmorfologią może pomóc na ustalenie podłoża wielu chorób rzadkich, w tym: choroby Hirschsprunga, mikrocefalii i hipoplazji móżdżku, nerwiakowłókniakowatości, hipofosfatazji, dysplazji klatki piersiowej, zaburzenia migracji neuronów.
Podłoże genetyczne choroby istotnym elementem diagnostyki i leczenia
Znajomość podłoża genetycznego choroby jest bardzo istotna zarówno z punktu widzenia diagnozy, jak też optymalnego leczenia. Podobne objawy mogą wynikać z bardzo różnych przyczyn, których znalezienie może być niemożliwe tradycyjnymi metodami. W takim przypadku leczenie skupia się jedynie na łagodzeniu objawów choroby, bez usunięcia tego, co ją powoduje. Pomocne może być sięgnięcie po dedykowany dla konkretnego schorzenia diagnostyczny panel genowy. Pozwala on zbadać geny mające, potwierdzony naukowo, związek z chorobą. W trakcie analizy wykrywane są mutacje typu SNP (ang. Single Nucleotide Polymorphisms), zmieniające pojedynczy nukleotyd oraz niewielkie insercje i delecje w obrębie genu. Możliwe jest także wykrycie amplifikacji lub utraty całego genu, czyli zmian liczbie jego kopii (ang. CNV – Copy Number Variation). Analizować można nie tylko zmiany w genomie jądrowym, ale również w mutacje genomie mitochondrialnym, które także mogą przyczyniać się do utraty zdrowia. Identyfikacja nieprawidłowego genu pozwala ustalić mechanizm prowadzący do wystąpienia lub wpływający na przebieg choroby. Daje to możliwość spersonalizowania sposobu leczenia, to znaczy optymalnego dobrania go do przyczyn będących podłożem choroby oraz potrzeb pacjenta. Terapia jest wtedy skuteczniejsza, a także daje możliwość uniknięcia niepożądanych efektów ubocznych związanych z jej niedopasowaniem. Znajomość czynników genetycznych wpływających na stan zdrowia może być także bardzo ważne dla krewnych chorego. Daje im możliwość sprawdzenia, czy posiadają uszkodzoną formę genu. Dzięki tej wiedzy dostają szansę zastosowania odpowiedniej profilaktyki, która pozwoli na wcześniejsze wykrycie choroby, złagodzenie jej przebiegu, a w niektórych wypadkach całkowicie jej uniknięcie.
>> Przeczytaj również: Rola badań genetycznych w diagnostyce nowotworów
Jak wygląda badanie genetyczne?
Badanie genetyczne nie jest skomplikowane. Polega na pobraniu kilku mililitrów krwi do probówki z EDTA. Nie wymaga to specjalnych przygotowań jak na przykład bycia na czczo. Jedynym problemem może być wybór konkretnego panelu genowego tak, aby jak najlepiej odpowiadał potrzebom pacjenta. Pomóc w tym może konsultacja z lekarzem genetykiem lub innym specjalistą. Pobrana od pacjenta krew przesyłana jest do laboratorium specjalizującego się w badaniach genetycznych. Następnie z komórek, które są w niej obecne, izoluje się materiał genetyczny w postaci DNA, który jest wykorzystywany do badania metodą NGS, czyli sekwencjonowania następnej generacji. Uzyskane w ten sposób wyniki poddawane są analizie bioinformatycznej, po czym są interpretowane przez doświadczonych diagnostów laboratoryjnych specjalizujących się badaniach genetycznych. Wynik badania przedstawia geny, w których wykryto zmiany mogące mieć związek ze stanem zdrowia pacjenta wraz z interpretacją ich znaczenia. Otrzymany wynik zawsze warto skonsultować z lekarzem specjalistą lub lekarzem genetykiem, który omówi jego znaczenie w kontekście klinicznym i zaproponuje dalsze postępowanie.